Arabidopsis root hair development in adaptation to iron and phosphate supply

نویسنده

  • Thomas J. Buckhout
چکیده

D i s s e r t a t i o n zur Erlangung des akademischen Grades d o c t o r r e r u m n a t u r a l i u m ABSTRACT Limitation of immobile nutrients, such as iron (Fe) and phosphate (P), induces the development of additional root hairs that lead to an increase of the absorptive surface of the root. The increased root hair frequency of Fe-and P-deficient Arabidopsis was realized by different strategies. Phosphate-deficient plants increased the number of root hairs while in Fe-starved plants root hairs were branched. The Fe and P starvation responses in plants are thought to be regulated by a systemic signaling mechanism that communicates the nutrient status of the shoot to the root and by a local signaling mechanism that perceives the Fe or P availability in the soil. The influence of local and systemic signals on the respective root hair phenotype was investigated in split-root experiments. This treatment was combined with either a nutrient-sufficient or-deficient shoot. The root hair branching typical of Fe-deficient plants only occured in the presence of both a local and a systemic Fe-deficiency signal. As a consequence, an Fe sufficiency signal acted dominantly to any deficiency signal, independent of its origin. The increased number of root hairs in P-deficient plants, conversely, was activated through either a local or a systemic P deficiency signal. Thus, the P deficiency signal acted dominantly to any sufficiency signal. To determine, which stage of root hair development was influenced by iron and phosphate, mutants with defects in different stages of root hair development were investigated for their root hair phenotype. Mutants affected in the early stages of root hair development, such as specification, displayed marked changes in the number and localization of root hairs. However, the nutritional signal was perceived and translated in this group of mutants. This indicates that the specification genes are involved in the nutrient-sensitive root hair formation, but may not be the direct targets. Early cell characteristics of root hairs in the late meristematic region of the root, like the expression of marker genes, were unaltered in plants adapted to Fe or P deficiency. This suggested the nutritional signal modulates root hair development after these characteristics have been established. Mutants with defects in the later stages of root hair development, such as root hair elongation, showed short or deformed root hairs …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Environmentally induced plasticity of root hair development in Arabidopsis.

Postembryonic development of plants is dependent on both intrinsic genetic programs and environmental factors. The plasticity of root hair patterning in response to environmental signals was investigated in the Columbia-0 wild type and 19 Arabidopsis mutants carrying lesions in various parts of the root hair developmental pathway by withholding phosphate or iron (Fe) from the nutrient medium. I...

متن کامل

Different pathways are involved in phosphate and iron stress-induced alterations of root epidermal cell development.

Low bioavailability of phosphorus (P) and iron (Fe) induces morphogenetic changes in roots that lead to a higher surface-to-volume ratio. In Arabidopsis, an enlargement in the absorptive surface area is achieved by an increase in the length and frequency of hairs in roots of Fe- and P-deficient plants. The extra root hairs are often located in positions that are occupied with non-hair cells und...

متن کامل

Role of hormones in the induction of iron deficiency responses in Arabidopsis roots.

In "strategy I" plants, several alterations in root physiology and morphology are induced by Fe deficiency, although the mechanisms by which low Fe levels are translated into reactions aimed at alleviating Fe shortage are largely unknown. To prove whether changes in hormone concentration or sensitivity are involved in the adaptation to suboptimal Fe availability, we tested 45 mutants of Arabido...

متن کامل

Functional implications of K63-linked ubiquitination in the iron deficiency response of Arabidopsis roots

Iron is an essential micronutrient that plays important roles as a redox cofactor in a variety of processes, many of which are related to DNA metabolism. The E2 ubiquitin conjugase UBC13, the only E2 protein that is capable of catalyzing the formation of non-canonical K63-linked ubiquitin chains, has been associated with the DNA damage tolerance pathway in eukaryotes, critical for maintenance o...

متن کامل

Recent Advances in Understanding the Molecular Mechanisms Regulating the Root System Response to Phosphate Deficiency in Arabidopsis

Phosphorus (P) is an essential macronutrient for plant growth and development. Inorganic phosphate (Pi) is the major form of P taken up from the soil by plant roots. It is well established that under Pi deficiency condition, plant roots undergo striking morphological changes; mainly a reduction in primary root length while increase in lateral root length as well as root hair length and density....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007